

ETUDE RE2020

Logements collectifs

Mars 2022

www.pouget-consultants.fr

contact@pouget-consultants.fr

SIEGE SOCIAL: 81, rue Marcadet | 75018 PARIS FRANCE

Tél: +33 (0)1 42 59 53 64

AGENCE NANTES: 4, place François II | 44200 NANTES FRANCE

Tél: +33 (0)2 40 12 21 22

SOMMAIRE

1. Les indicateurs de la RE2020

- 2. Le PCBT dans la RE2020
 - 1. DH: degrés heures d'inconfort d'été
 - 2. Cep.nr et lc Energie
 - 3. Ic Construction
- 3. Le PCBRT face au climat de 2050

LES INDICATEURS DE LA RE2020

ÉNERGIE

Bbio: besoins bioclimatiques

→ Accessible à tous les solutions d'isolation

Cep,nr: conso. en énergie primaire <u>non</u> renouvelables (électricité + gaz)

Cep : conso. en énergie primaire

→ Droit à consommer supplémentaire pour les énergies Bois et réseau de chaleur EnR

CARBONE

Ic construction: impact carbone des matériaux et équipements (+chantier)

Ic énergie: impact carbone des consommations d'énergie

CONFORT D'ÉTÉ

Degrés-heures : Nombre d'heures d'inconfort en période estivale caniculaire

Indicateurs sans seuil (indicatif) :

- Ic bâtiment : Impact carbone global
- Stockage carbone
- Icded_3à13 (impact carbone des données par défaut)

Indicateurs non retenus:

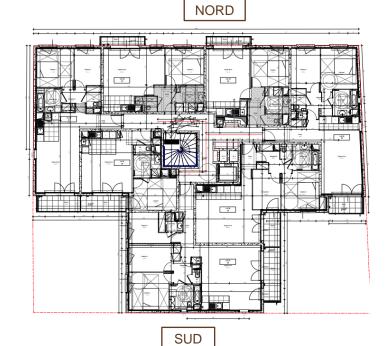
- Bilan BEPOS
- RCR (ratio de chaleur renouvelable)
- Tic

BÂTIMENT 32 LOGEMENTS

Caractéristiques

32 logements (2 T1 / 12 T2 / 12 T3 / 6 T4)

Compacité = 1,2 (bonne) Surface déperditives totales / SHAB


SHAB moyenne = 60 m²/log

76% de log traversants

Ratio surf. Baie/SHAB = 17%

Inertie lourde

SRT	2 417 m²		
SHAB	1 887 m²		
Ratio	1,28		

EST

OUEST

SOMMAIRE

- 1. Les indicateurs de la RE2020
- 2. Le PCBT dans la RE2020
 - 1. DH : degrés heures d'inconfort d'été
 - 2. Cep.nr et lc Energie
 - 3. Ic Construction
- 3. Le PCBRT face au climat de 2050

Calcul des Degrés-heures

- Scénario météo utilisé : canicule de 2003
- \rightarrow **DH** = \sum h x (Tint ressentie T confort objectif)
- Calcul systématique des DH, même si une climatisation est installée!
- La climatisation n'a pas d'impact sur le DH → seules les solutions dites passives ont un impact
- Les seuils :

DH < 350

350 < DH < 1250 Inconfort tolérable, ajout d'un forfait de pénalisation

DH > 1250 **Bâtiment non conforme**

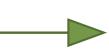
Calcul des DH avec distinction des parties traversantes et non traversantes

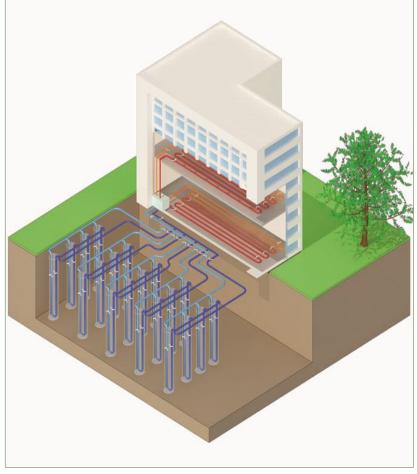
Calcul des Degrés-heures

- Seules les solutions « passives » ont un impact sur les DH
 - Orientation, inclinaison et surface des baies
 - Augmentation de l'inertie
 - Brasseur d'air → impact la température ressentie
- Logements traversants (sensibilité accrue des immeubles)
- Occultations perméables -
- Gestion des occultations (automatique / motorisée)
- Puit provençal, Géocooling

Volet roulant à lame orientable

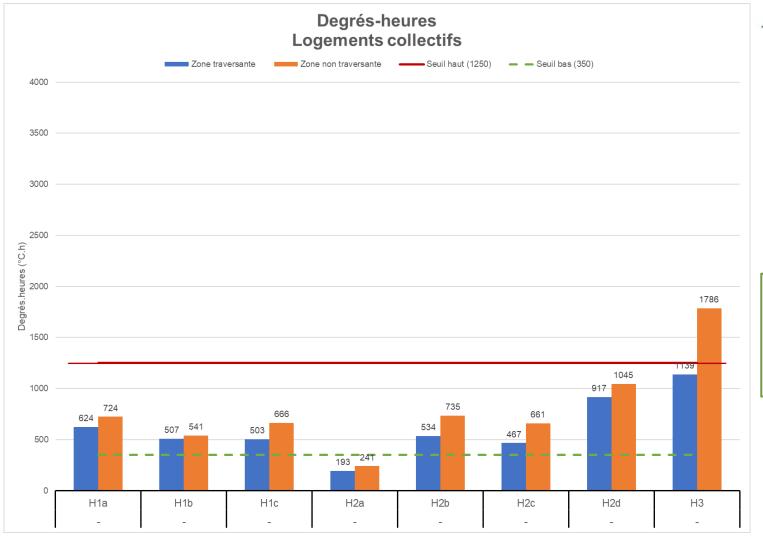
Volet roulant à projection


Vénitien extérieur (BSO)



Calcul des Degrés-heures

- Seules les solutions « passives » ont un impact sur les DH
 - Orientation, inclinaison et surface des baies
 - Augmentation de l'inertie
 - Brasseur d'air → impact la température ressentie
 - Logements traversants (sensibilité accrue en immeuble)
 - Occultations perméables
 - Gestion des occultations (automatique / motorisée)
 - Géocooling (pas d'ilot de chaleur, intégration PAC sans nuisance visuelle ou acoustique)



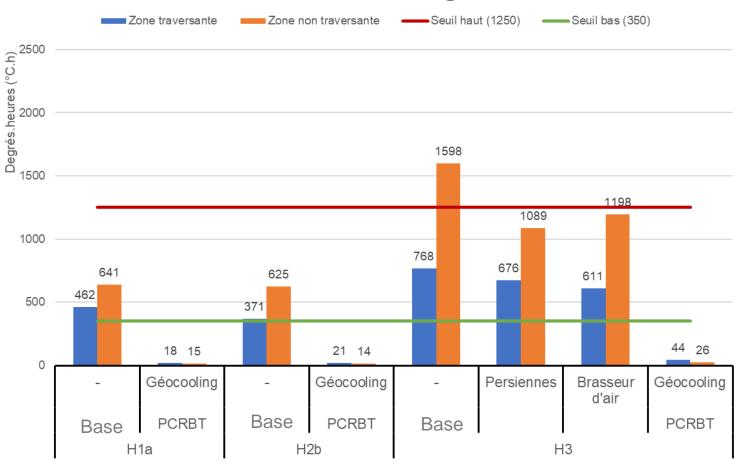
Exemple de DH en logements collectifs

En RE2020 pas d'incidence en dehors des zones H2d et H3.

Nota : Exigences supérieures récurrentes (ZAC, ville, label).

Bâtiment modélisé :

- Structure béton +
- Isolation intérieure +
- Volet roulant manuel



DEGRÉS HEURES

Confort d'été - DH

Degrés-heures H1a, H2b et H3 - 32 logements

Géocooling est très bien valorisé c'est l'un des rares leviers en capacité sous les 350 DH dans l'ensemble des zones climatiques.

DH < 350 = baisse du Cep et Cep.nr (clim fictive = 0)

Base: Structure béton + isolation intérieure + volet roulant manuel.

DEGRÉS HEURES

Confort d'été - DH

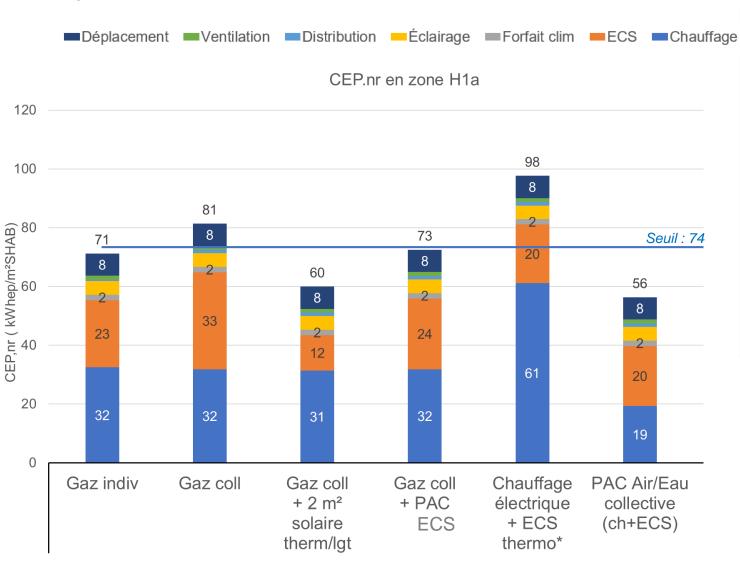
Synthèse RE2020:

L'association PCRBT/géocooling permet de très largement diminuer l'indicateur DH de la RE2020 (baisse de 80% à 95% selon les zones climatiques)

Le géocooling permet un confort optimal en période estivale caniculaire illustrer par un indicateur DH très faible : DH < 50

50 DH ça représente quoi? En considérant une température limite de confort à 26°C en période estivale, 50DH c'est 50 heures à 27°C <u>ou</u> 25 heures à 28°C <u>ou</u> 17 heures à 29°C.

SOMMAIRE


- 1. Les indicateurs de la RE2020
- 2. Le PCBT dans la RE2020
 - 1. DH: degrés heures d'inconfort d'été
 - 2. Cep.nr et lc Energie
 - 3. Ic Construction
- 3. Le PCBRT face au climat de 2050

CEP.NR

Cep.nr en <u>immeuble collectif</u> : Simulation RE2020 en H1a à Bbio=Bbiomax

Quelles incidences en résidentiel collectif?

- Gaz collectif contraint
 - → Besoin renforcement de l'isolation (BbioRE -5% à -15%*) ou de l'associer à une PAC pour la production d'ECS.
- Chauffage électrique très contraint
 - → Besoin d'un très fort renforcement de l'isolation (Bbio RE2020-35%, niveau passif).

ATTENTION: solution dites « composite » (mono-split dans le salon + chauffage électrique dans les chambres) compatible sans renforcement de l'isolation si climatisation non déclarée.

* Bbio-15% = +15€/m²shab



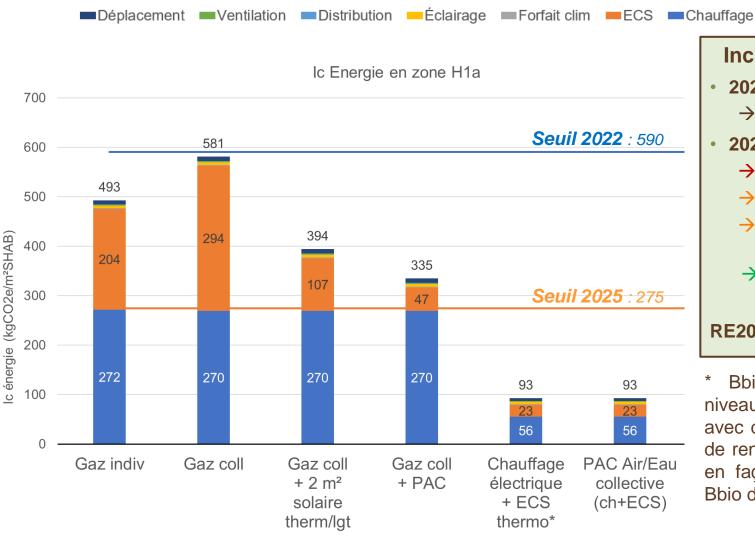
IC ENERGIE

Méthode de calcul du lc énergie et poids carbone des énergies

Ic énergie = Impact carbone des consommations d'énergie (usages réglementaires)

Type d'énergie	Poids carbone
Gaz	227 g/kWh
Électricité chauffage	64 à 79 g/kWh
Bois	24 à 30 g/kWh
Réseau de chaleur	Variable (cf arrêté du 21/10/21 ou Titre V RCU)

Nota: anticipation récurrente des seuils RE2020: Pinel +, Label, ZAC..



IC ENERGIE

Ic énergie en <u>immeuble collectif</u> : Simulation RE2020 en H1a à Bbio=Bbiomax

Incidences en résidentiel collectif?

- 2022 à 2025 :
 - → Pas d'incidence
- 2025 à 2031:
 - → 100% gaz impossible
 - → Gaz + solaire : très difficile
 - → Gaz + PAC ECS possible avec isolation renforcée (Bbio RE-20%)
 - → PAC Chauffage et ECS : accessible sans renforcement de l'isolation

RE2025 très demandée (Pinel+, label...etc).

* Bbio-20% = environ +20€/m²shab. Ce niveau d'isolation est difficilement compatible avec des solutions d'isolations intérieures (ex de renforcement en façade : 160mm d'isolant en façade contre 120mm pour respecter le Bbio de la RE2020).

CEP.NR ET IC ENERGIE

Conclusion générale

Conclusion RE2020:

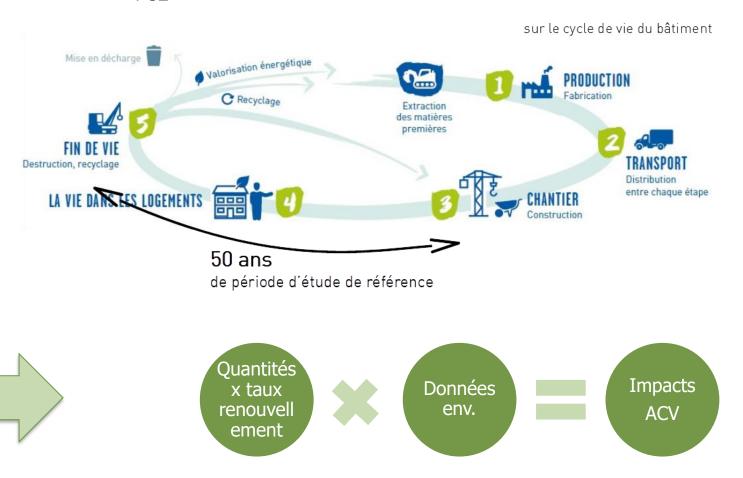
Solution phare pour respecter les seuils 2025 de la RE2020 : Pompe à chaleur collective

Conclusion générale:

L'association du PCBT à la PAC est bénéfique :

- Rafraichissement possible avec un émetteur robuste, silencieux et confortable (pas de courant d'air frais)
- Régime de température faible qui permet, pour la production de chauffage, une hausse des performances des pompes à chaleur de 40% en comparaison à des radiateurs :
 - COP de 4 avec PCBT (1kWh d'électricité consommé = 4 kWh de chaleur produite)
 - COP de 2,5 avec Radiateur 60/40 (1kWh d'électricité consommé = 2,5 kWh de chaleur produite)

SOMMAIRE


- 1. Les indicateurs de la RE2020
- 2. Le PCBT dans la RE2020
 - 1. DH: degrés heures d'inconfort d'été
 - 2. Cep.nr et lc Energie
 - 3. Ic Construction
- 3. Le PCBRT face au climat de 2050

Méthode de calcul

L'Ic-Construction caractérise l'impact carbone des matériaux et des équipements

→ Equivalent à Eges_{PCE} de l'expérimentation E+C-

Périmètre du lc Construction et valeurs forfaitaires

Lot 1: VRD

Lot 2: Fondations et infrastructure

Lot 3 : Superstructure, maçonnerie

Lot 4 : Couverture, étanchéité, charpente

Lot 5 : Cloisonnement, doublage, menuiseries intérieures

Lot 6 : Façades et menuiseries extérieures

Lot 7 : Revêtements intérieurs, chape, produits de décoration

Lot 8.1 : Production de chaleur/froid (générateur et ballon)

Lot 8.2 à 8.6 : Ventilation, réseau, conduit, émetteur

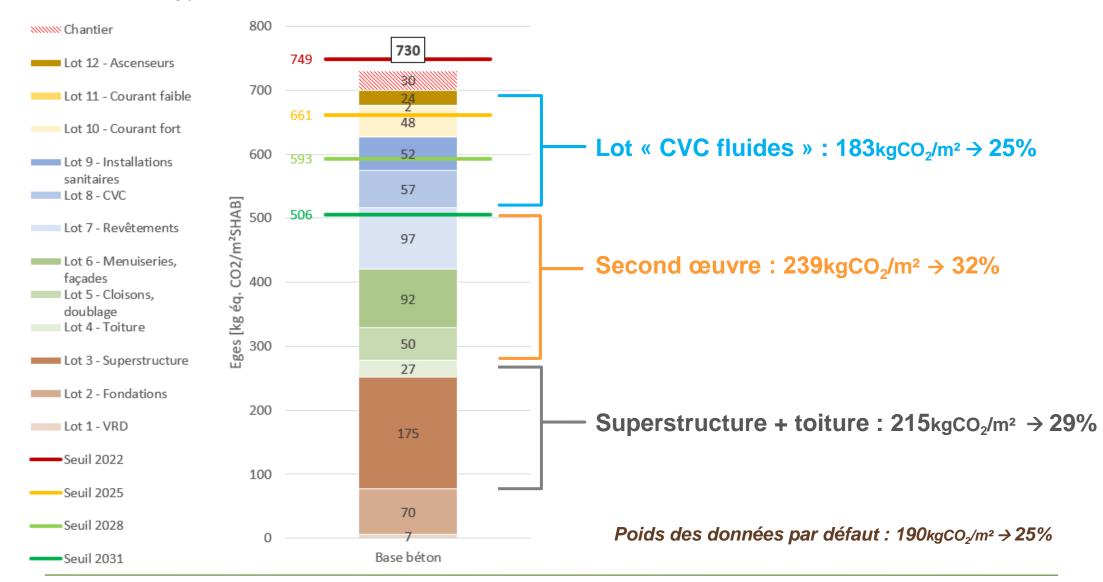
Lot 8.7 : Fluide frigorigène

Lot 9: Installations sanitaires

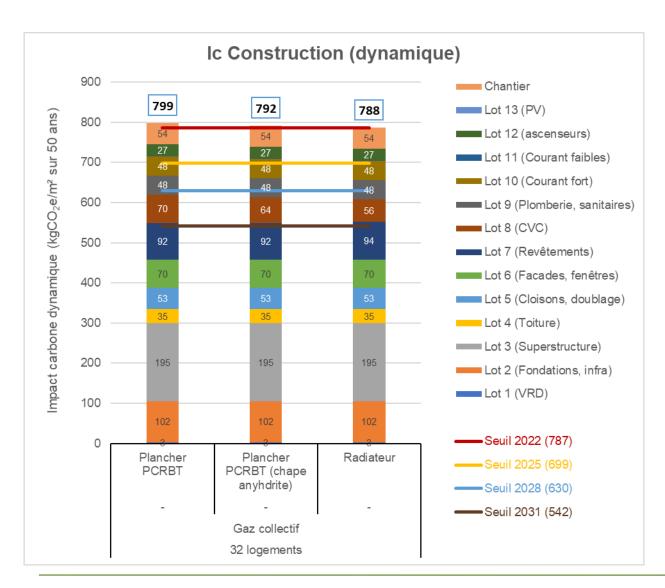
Lot 10 et 11 : Courant faible, courant fort (forfait disponible)

Lot 12: Ascenseur

Lot 13 : Equipement de production locale d'électricité


Contributeur Chantier

Nouveauté RE2020 : prise en compte des lots CVC fluides dans l'ACV (dont les émetteurs)

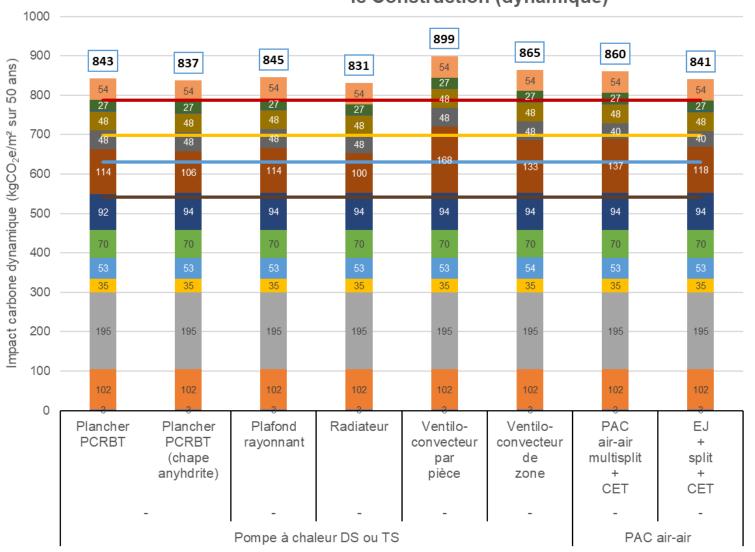

Bilan ACV type en immeuble collectif

Ic construction: Structure béton + Gaz

Hypothèse : pas de chape à tous les niveaux en dehors du cas PCBT (chape à RDC uniquement).

→ L'ajout d'une chape à tous les niveaux alourdi le lc Construction de 13kgC02/m². Dans ces conditions la hausse engendrées par le PCBT est proche de zéro.

Incidence faible du PCBT.


Incidence nulle si chape à tous les niveaux.

Ic construction : structure béton + rafraichissement

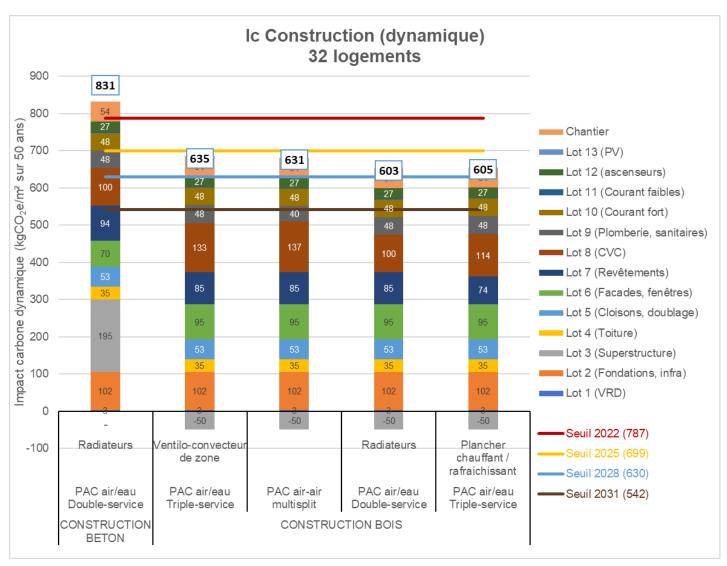
Ic Construction (dynamique)

- · Ventilo-convecteur très défavorisé.
- Solution PAC Air/Air très défavorisée.

Nota : l'ensemble des solutions PAC sont défavorisées aujourd'hui car peu de PEP disponibles à ce jour.

Hypothèse : pas de chape à tous les niveaux en dehors du cas PCBT (chape à RDC uniquement).

Le PCBRT est l'émetteur froid le moins carboné!

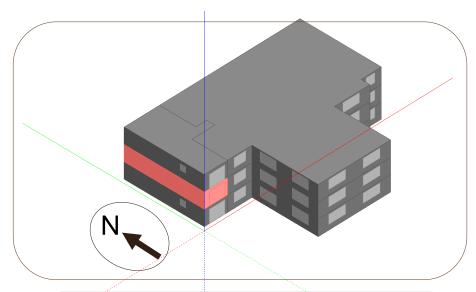


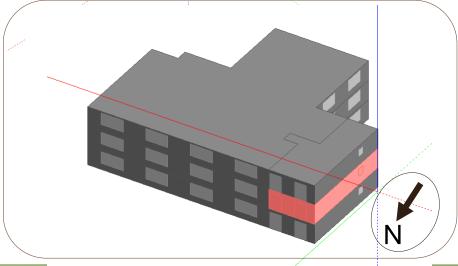
Ic construction : structure bois + rafraichissement

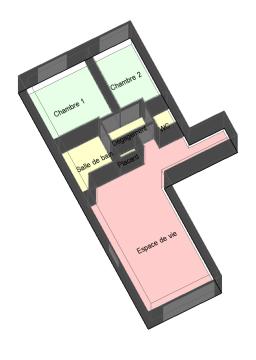
PCBRT adapté en construction bois (chape présente à tous le niveaux systématiquement) :

- → Impact nul en comparaison à des radiateurs
- → Impact largement supérieur des ventilo-convecteurs

SOMMAIRE

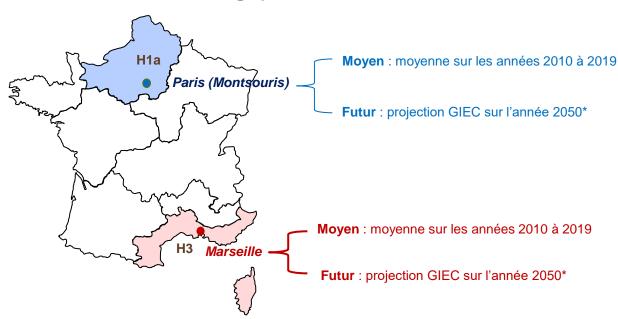



- 1. Les indicateurs de la RE2020
- 2. Le PCBT dans la RE2020
 - 1. DH: degrés heures d'inconfort d'été
 - 2. Cep.nr et lc Energie
 - 3. Ic Construction
- 3. Le PCBRT face au climat de 2050

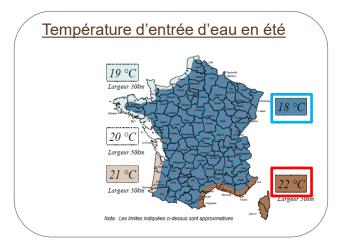


DOMAINE D'ÉTUDE

Modélisation 3D


Pièce	Surface	
Espace de vie	28,7m²	
Salle de bain	4,5m²	
Dégagement + WC	1,6m²	
Chambre 1	9,8m²	
Chambre 2	7,5 m	
Total	52,1 m ²	

DOMAINE D'ÉTUDE


Fichiers météorologiques retenus

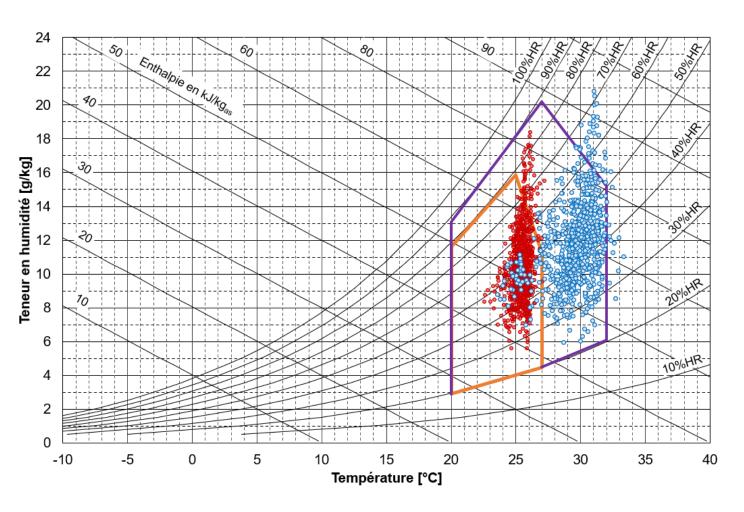
	PARIS		MARSEILLE	
	Moyen	2050*	Moyen	2050*
Minimale	-4,0	-3,1	-3,3	-2,0
Maximale	34,3	36,0	36,0	38,2
Moyenne	12,7	14,0	15,8	17,2
N heure >30°C	35	107	294	575
N heure >28°C	87	265	579	956
N heure >26°C	235	505	940	1440

*Scénario RCP 4,5 - Trajectoire: stabilisation sans dépassement

Régulation

Comparing CMIP5 and CMIP6 scenarios

For currently available runs, from 1880-1900 to 2090-2100. </> CB Source: https://www.carbonbref.org/cmip6-the-next-generation-of-climate-models-explained



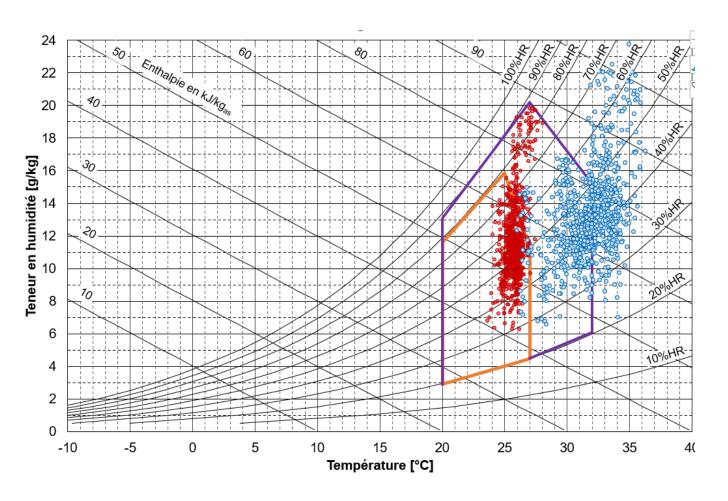
Prévision RCP4,5 → +2,6°C en moyenne

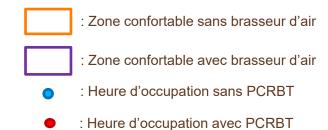
Résultats

Fichier météo : Paris (moyen) Période : 15 juin au 15 septembre

: Zone confortable sans brasseur d'air
: Zone confortable avec brasseur d'air
: Heure d'occupation sans PCRBT
: Heure d'occupation avec PCRBT

Confort garanti aujourd'hui sans couplage à des solutions passives (brasseurs d'air, occultations).

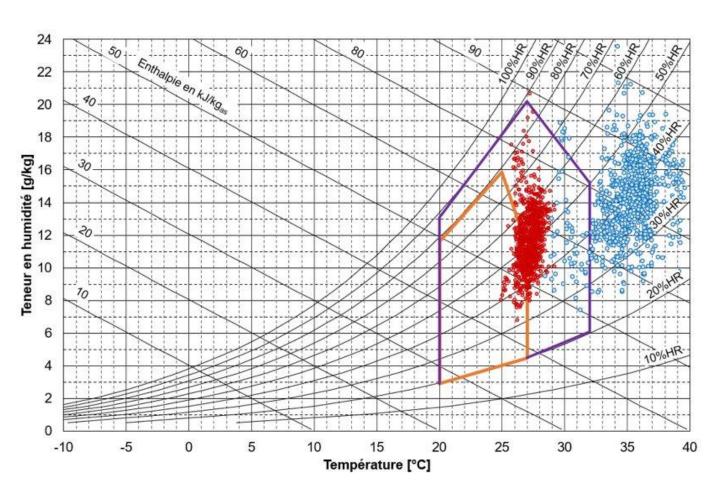

→ Moins de 60H > 26°C

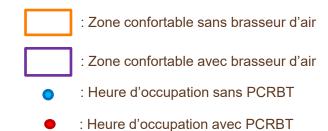


Résultats

Fichier météo : Paris (GIEC 2050) Période : 15 juin au 15 septembre

Confort garanti aujourd'hui sans couplage à des solutions passives (brasseurs d'air, occultations).

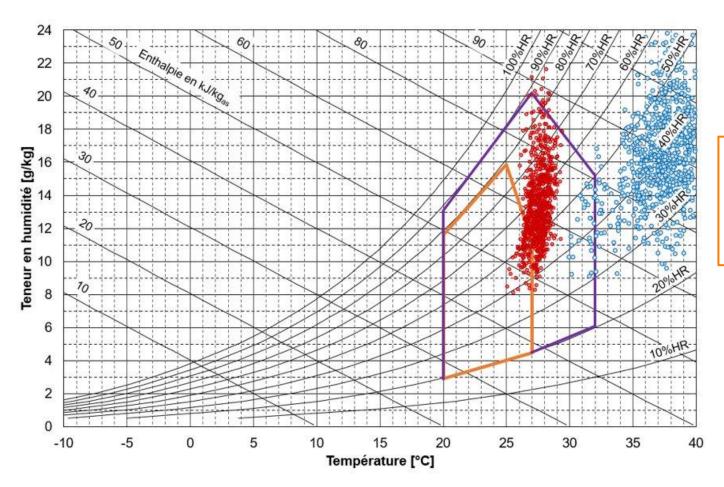

- Moins de 60h > 26°C
- 0h>26°C avec solutions passives

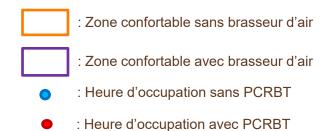


Résultats

Fichier météo : Marseille (Moyen) Période : 15 juin au 15 septembre

Confort garanti en 2050 si le PCRBT est couplé à des leviers passifs (occultations, brasseur d'air...etc).


- 1h>26°C avec solutions passives



Résultats

Fichier météo : Marseille (GIEC2050) Période : 15 juin au 15 septembre

Confort garanti en 2050 si le PCRBT est couplé à des leviers passifs (occultations, brasseur d'air...etc).

- 16h>26°C avec solutions passives.

SYNTHESE

PCBRT une solution compatible « Neutralité carbone 2050 » :

- La pompe à chaleur est la solution phare pour décarboner le bâtiment et répondre aux exigences de la RE2020 millésime 2025 (exigence Pinel +). Le PCRBT associé à une pompe à chaleur permet :
 - Une amélioration des performances (COP) de la pompe à chaleur de 40% (pour la production de chauffage),
 - De rafraichir les logements avec un émetteurs robuste, silencieux et confortable (pas de courant d'air frais),
- Le PCRBT c'est un confort d'été maintenu jusqu'en 2050 dans toutes la France. Dans le sud-est de la France il faudra pour cela l'associer à des solutions passives (brasseurs d'air, occultation performante).
- Compatibilité forte avec solutions constructive bois (chape présente systématiquement).
- En RE2020, le PCRBT est l'émetteur en capacité de rafraichir dont l'impact carbone est le plus faible.
- Compatibilité forte avec les solutions innovantes de demain (émetteur basse température). Déployer le PCBT aujourd'hui c'est faciliter le raccordement future au solution de production de demain.

